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Oscillatory Burner-Attached Diffusion Flame in a Viscous
Vortex
Milan Miklavcica and Indrek S. Wichmanb

aDepartment of Mathematics, Michigan State University, East Lansing, Michigan, USA; bDepartment of
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ABSTRACT
A method for mathematically solving the oscillatory infinite reaction
rate diffusion flame is extended to the case where the oscillating
convective coflow is either inside of, or adjacent to, a viscous vortex.
The neglect of streamwise diffusion coupled with the restriction to
infinite rate chemistry produces a Burke-Schumann boundary layer
flame. The mathematical transformation, which does not require a
priori restriction to small coflow oscillations, renders the transient
oscillatory problem equivalent to a steady-state problem that can
be solved mathematically and numerically evaluated to a high
degree of accuracy. Flow fluctuations that are large fractions of the
initial flow field are described exactly. Features of the flame response
are examined without recourse to detailed time-dependent numer-
ical simulations. There is no need to perform any small-perturbation
analyses. The method is applied to examine the influences of the bulk
inflow speed, the bulk inflow oscillation rate, and the interaction of
the inflow and its oscillation rate with the viscous vortex.
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Introduction and background

This article formulates a Burke-Schuman (B-S) model (Burke and Schuman, 1928) in
order to examine burner-attached flames. The rotating burner flames are situated in a bulk
flow that is both oscillatory and rotational, the oscillatory flow being along the flame axis,
or length, and the rotation being in the direction of the main flame axis.

The B-S flame model has two distinct core features. (1) Negligible streamwise diffusion
of species, thermal energy, and momentum. Thus, the B-S formulation is essentially a
boundary-layer formulation (Schlichting and Gersten, 2000). (2) Infinitely fast flame
chemistry. Thus, nonlinearities associated with reaction chemistry disappear from the
problem.

The purpose of this study is to examine a particular case of the burner/whirl for which
an exact mathematical solution can be developed and then used in order to examine the
influence of the flow features on their structure and behavior. The intent of this work is to
demonstrate that a simple model with a rigorous (exact) solution can provide important
information about the basic structure of attached diffusion flames. The message is that a
mathematical model, which can be solved analytically, can reproduce many important and
possibly dominant flame characteristics and behaviors: adding more terms to the

CONTACT Indrek S. Wichman wichman@egr.msu.edu Department of Mechanical Engineering, Michigan State
University, East Lansing, Michigan, USA
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gcst.

COMBUSTION SCIENCE AND TECHNOLOGY
https://doi.org/10.1080/00102202.2018.1497018

© 2018 Taylor & Francis

http://www.tandfonline.com/gcst
https://crossmark.crossref.org/dialog/?doi=10.1080/00102202.2018.1497018&domain=pdf&date_stamp=2018-07-26


equations enables the physics to be more accurately characterized but would also cloud the
problem by making it impossible to solve using analytical techniques. Such a study would
necessarily be numerical and dependent upon additional factors.

As background and justification, analytical models provide physical and mathematical
information in the form of strict quantifiable relationships. This is one reason that the
studies of Roper (1977a, 1977b) are still cited at an appreciable rate. Analytical models are
important also for a more general reason: experiments and numerical simulations are
described in the context of models whose predications allow a focused interpretation of
the experimental measurements and numerical solutions in terms of these strict quantifi-
able relationships.

Historically, flame oscillations have been examined in many areas of combustion. One
of these areas is microcombustion (Fernandez-Pello, 2002). The technical challenge is to
insure continued combustion under strong heat-loss conditions. Another area, not unre-
lated to the first, is burner flame attachment. The classical problem is that of a fuel stream
emitted into a coflow of surrounding oxidizer. In order to avoid complications caused by
vortex trains populated with small, intense vortices (Roshko, 1976) researchers have
examined jets in which the fuel and surrounding oxidizer have nearly similar coflow
velocities. Issues of concern are flame heights, combustion rates, heat release, lame stand-
off distances, and conditions enabling blowoff. Fundamental studies on this topic have
been conducted over many years, e.g. (Chung and Lee, 1991; Lee et al., 2003).

Regarding the control of combustion on burner-attached flames, the focus has been on
understanding flame response to oscillating flow fields (Takahashi et al., 2007; Won et al.,
2002). One control strategy is to increase flame surface, and therefore reactant consump-
tion and heat release, by suitably modulating the oscillatory coflow (Magina et al., 2013).
Exactly how much to oscillate the coflow, and in what fashion, remains a largely unan-
swered question.

Theoretical work on oscillating diffusion flames has examined flame response to both
axial velocity and mixture fraction oscillations. The mixture fraction equation is custo-
marily solved subject to the restriction to small flow perturbations (Preetham et al., 2010).

The configuration to be studied here considers an oscillating coflow velocity field that is
also rotating. The rotational field, a viscous vortex, permits the development of an exact
solution of the governing equations. A large inflow velocity makes diffusion in the
x-direction irrelevant (which leads to the B-S model) and it also dwarfs the influences
of buoyancy and entrainment. Consequently, the model studied here is meant to describe
situations with a reasonably “large” inflow velocity. Situations with a low reactant inflow
velocity will require including the effects of buoyancy, entrainment, and perhaps a low-
speed transverse flow. These effects can currently only be characterized by experiments
and massive numerical simulations.

Problem formulation

Consider the physical configuration shown in Figure 1. Fuel flows toward the positive
x-direction through one or more channels that are each adjacent to one or more oxidizer
channels. This configuration is called a slot burner (Azzoni et al., 1999; Gaydon and
Wolfhard, 1979). For simplicity of analysis, the velocities in each of the channels are
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considered identical. For this reason, the formation of shear layers between adjacent
channels is not considered. In addition to the streamwise flow the current work, in
contrast to previous work (Miklavcic and Wichman, 2016), considers a rotational flow
imposed on this jet-like burner.

As a physical background, the streamwise oscillating and transversely rotating flow field
having velocity components vr ¼ 0; vθ ¼ rΩ; vx ¼ uðtÞ satisfies the constant-density equa-
tion for conservation of mass, ð1=rÞ@ðrvrÞ=@r þ ð1=rÞ@vθ=@θþ @vx=@x ¼ 0. It also pro-
duces the following results for the Navier-Stokes momentum balance equations in
cylindrical coordinates:

@p
@r

¼ ρrΩ2;
@p
@θ

¼ 0;
@p
@x

¼ �ρ
du0ðtÞ
dt

: (1)

These three equations integrate to give, for the pressure field
pðt; r; θ; zÞ ¼ ρr2Ω2=2� ρxdu=dt þ FðtÞ, where FðtÞ is a function of time. Thus, the
velocity field ð0; rΩ; uðtÞÞ satisfies the Navier-Stokes equations, as required.

Once the velocity field is known it remains for the B-S combustion analysis to solve the
equation for the mixture fraction, Z, which is written as

@Z
@t

þ u
@Z
@x

þΩ
@Z
@θ

¼ D
1
r
@

@r
r
@Z
@r

� �
þ 1

r
@2Z

@θ2

� �
¼ D

@2Z
@y2

þ @2Z
@z2

� �
: (2)

Here vθ=r ¼ Ω and it is understood that the bulk fluid rotation rate Ω is constant. In Eq.
(2) the Laplacian was equivalently written in cylindrical and Cartesian coordinates. Note
that an alternative form of the derivative of Z with respect to θ, the polar angle in the y� z
plane measured counterclockwise from the y-axis, is given by

Figure 1. Fuel enters into the half-space x > 0 through an opening (or openings) surrounded by a
coflowing stream of oxidizer. Rotation of the flow (Ω) is about the x-axis.
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@Z
@θ

¼ y
@Z
@z

� z
@Z
@y

: (3)

Solution

The mathematical transformation for the viscous swirling jet consists of two solution
parts. The theoretical approach produces an exact relation between these parts, the first
being a simpler steady, nonrotating “base” problem, the second being the unsteady,
rotating “full” problem. The transformation yields the solution of the full problem in
terms of the solution of the base problem. The method is outlined below for the problem
with vorticity. Miklavic and Wichman (2016) provide the reader with a similar transfor-
mation for the simpler problem with no vorticity, i.e., Ω ¼ 0.

In addition to outlining the theoretical transformation, two additional mathematical
details are provided. The first is the mathematical relationship between the base and full
problems, including a calculation of the flame height and oscillation. The second is a
description of the calculation of the transient, rotating flame surface.

Base problem (steady, no vorticity)

The base version of Eq. (2) is steady (uðtÞ ¼ u0 ¼ const) and there is no vorticity (Ω ¼ 0).
Thus,

u0
@Z0

@x
¼ D

@2Z0

@y2
þ @2Z0

@z2

� �
: (4)

The base problem has many exact solutions. For example, for a single burner centered at
the origin in the rectangular domain yj j< b and zj j< c the base solution is

4Z0ðx; y; zÞ ¼ erf
b� yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xD=u0

p þ erf
bþ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xD=u0

p
 !

� erf
c� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xD=u0

p þ erf
cþ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xD=u0

p
 !

: (5)

The base mixture fraction Z0 satisfies

lim
x!0þ

Z0ðx; y; zÞ ¼ 1 if jyj< b and jzj< c
0 if jyj> b or jzj> c

�
(6)

at the exit plane, where the fuel stream is emitted into a coflowing infinite oxidizer stream
having the same velocity. The solution given by Eq. (5) vanishes in the far field for any
value of x, as required.

When Z0 is obtained by Eq. (5), then Z0ðx; y� yc; z � zcÞ, which represents a burner
with center at ðyc; zcÞ in the exit plane x ¼ 0, is also a solution of Eq. (4). Rotation of off-
center flames produces flame whirls that will be discussed below. An example can be seen
in Figure 1.
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Note that any configuration of disjoint rectangular burners can be represented analy-
tically by a superposition of appropriate modifications of Eq. (5). Therefor, the method
outlined here provides a way to analyze quickly many different burner configurations.

The flame boundary of the infinite-rate chemistry diffusion flame is located at the
position where the oxidant and fuel are in the stoichiometric ratio, or in other words, on
the surface Z ¼ Zst . In practice, Zst is typically small, of Oð10�1Þ. The present calculations
use Zst ¼ 0:3, as in Magina et al. (2013), but Zst can be approximately 10� smaller. Its
smallness enables approximating the flame height H of a rectangular burner, Eq. (5), as
follows:

Zst ¼ erf
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4HD=u0
p erf

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4HD=u0

p � bc
πHD=u0

;

whereby

H � bcu0
πDZst

: (7)

Full problem (unsteady, with vorticity)

The full mixture fraction Eq. (2) is solved subject to exit plane conditions, Eq. (6). The
exact solution Z of Eq. (2) at time t and point ðx; y; zÞ is found in terms of the exact base
solution Z0 of Eq. (4) at a point ð�; η; ζÞ as follows:

Zðt; x; y; zÞ ¼ Z0ð�; η; ζÞ; (8)

where the new independent variables �, η, and ζ are given in terms of the full problem
physical variables t, x, y, z by the relations

� ¼ u0 � ½t � S�1ðSðtÞ � xÞ�; (9)

η ¼ y cosðΩ�=u0Þ þ z sinðΩ�=u0Þ; (10)

ζ ¼ �y sinðΩ�=u0Þ þ z cosðΩ�=u0Þ: (11)

Here the function SðtÞ is defined as

SðtÞ ¼ �t0 uðκÞdκ; (12)

where κ is a dummy variable of integration. There is only one limitation to this transforma-
tion, as was discussed inMiklavcic andWichman (2016): the flowmust always exit the burner.
Thus the fluctuating burner velocity can never produce a negative or backflow value for u.

To verify that Z given by Eqs. (8)–(11) satisfies Eq. (2) note first that

�t ¼ u0 � u0ðS�1Þ0ðSðtÞ � xÞuðtÞ; ηt ¼ ζΩ�t=u0

and

ζ t ¼ �ηΩ�t=u0:
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Hence

Zt ¼ ðu0Z0� þΩζZ0η �ΩηZ0ζÞ�t=u0:

Then

�x ¼ u0ðS�1Þ0ðSðtÞ � xÞ; ηx ¼ ζΩ�x=u0; ζx ¼ �ηΩ�x=u0;

whereby

Zx ¼ ðu0Z0� þΩζZ0η �ΩηZ0ζÞ�x=u0: (13)

Use of the relation

�t þ uðtÞ�x ¼ u0

in Eqs. (9)–(11) implies that

Zt þ uðtÞZx ¼ u0Z0� þΩζZ0η �ΩηZ0ζ :

Note also that

Zy ¼ Z0η cosðΩ�=u0Þ � Z0ζ sinðΩ�=u0Þ;

Zz ¼ Z0η sinðΩ�=u0Þ þ Z0ζ cosðΩ�=u0Þ;

which imply that

zZy � yZz ¼ ζZ0η � ηZ0ζ

and

Z2
y þ Z2

z ¼ Z2
0η þ Z2

0ζ : (14)

Knowing these relations, it is readily shown that Zyy þ Zzz ¼ Z0ηη þ Z0ζζ . The above
results verify completely the entire transformation.

Relation between base and full problems

The goal of the above mathematical treatment is to describe flame shapes and behaviors.
This goal is achieved by transforming the solution for the base flame via Eqs. (8)–(12) at
the base flame point ð�; η; ζÞ in order to generate the unsteady, rotating flame boundary
point ðx; y; zÞ at time t. In order to see this clearly, it is necessary to invert Eqs. (9)–(11) to
obtain, for the streamwise ðxÞ flame coordinate the relation

x ¼ SðtÞ � Sðt � �=u0Þ; (15)
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and for the transverse ð yÞ flame coordinate the relation

y ¼ η cosðΩ�=u0Þ � ζ sinðΩ�=u0Þ (16)

and finally for the transverse ðzÞ flame coordinate the relation

z ¼ η sinðΩ�=u0Þ þ ζ cosðΩ�=u0Þ: (17)

Observe that Eq. (12) must yet be used in Eq. (15). The above transformation of individual
points from the steady (and nonrotating) flow field to the unsteady (and rotating) flow
field is valid for general exit velocity functions uðtÞ subject only to the already-discussed
physical constraint u > 0. Mathematically, violation of this constraint would render the
transformation given by Eqs. (8)–(11) noninvertible. Thus, decaying velocity fields such as
u ¼ u0e�κt are acceptable, as are turbulent velocity fields uðtÞ ¼ u0 þ u0ðtÞ, for example
(Figure 6). As an illustrative and manageable special case, consider the regular, sinusoid-
ally oscillating velocity field given by the simple function

u ¼ u0 þ εu0 cosωt: (18)

In order to prevent backflow it must be true that � 1< ε< 1. However, ε does not need to
be small as was required in previous studies based on perturbation theory, e.g., Magina
et al. (2013), Preetham et al. (2010), and Tyagi and Jamadar (2007). Using this in Eq. (12)
and then in Eq. (15) yields, for the streamwise position of any point in the transient
rotating flow field,

x ¼ � þ ε�
sin δ
δ

cosðωt � δÞ; where δ ¼ ω�

2u0
: (19)

A point on the flame surface of any steady diffusion flame at a distance � above the plate
will oscillate in the x-direction according to Eq. (19) when subjected to the bulk velocity
flow Eq. (18) and any rotation. Note that the amplitude of the oscillations is zero when
δ ¼ nπ, i.e., when � ¼ 2nπu0=ω. This defines nodal planes that are 2πu0=ω apart, see
Figure 2. (Note: physical variables are all in the cgs system.) A rectangular burner with
flame height given by Eq. (7) has the

number of nodal planes � bcω
2π2ZstD

: (20)

The vorticity Ω rotates the flame boundary point ð�; η; ζÞ of any steady diffusion plane
through the angle Ω�=u0 about the �-axis. For a rectangular burner having flame height
given by Eq. (7) the number of

rotations of the top of the flame � bcΩ
2π2ZstD

: (21)

Figure 4 illustrates a flame on a narrow burner, having small Ω and strongly oscillating
bulk velocity. When Ω ¼ ω a resonance appears between the bulk rotation and streamwise
oscillation rates as illustrated in Figure 5.

COMBUSTION SCIENCE AND TECHNOLOGY 7



Flame surface area

This subsection shows the calculation of the flame surface area, which is proportional the
reactant consumption rate. The boundary of the base flame surface Z0ð�; η; ζÞ ¼ Zst is
parametrized by using � and one other parameter, φ. Different parts of the surface may
require different parametrizations. A viable choice is φ ¼ θ, the polar angle in the
transverse plane at the height �. Choosing φ ¼ η is also possible. At the flame sheet

Figure 2. Seven (7) nodal planes with no rotation (Ω ¼ 0). b ¼ c ¼ 1cm cm, D ¼ 1cm2=scm2/s, u0 ¼
5cm=s cm/s, ω ¼ 50s�1 s–1, ε ¼ 0:99. Note the closeness of ε to unity, meaning large flow
perturbations.

8 M. MIKLAVCIC AND I. S. WICHMAN



Z0ð�; ηð�;φÞ; ζð�;φÞÞ ¼ Zst: (22)

Equations (15)–(17) give the position vector on the boundary of the full flame surface as

~r ¼ ðSðtÞ � Sðt � �=u0Þ; η cosðΩ�=u0Þ � ζ sinðΩ�=u0Þ; η sinðΩ�=u0Þ
þ ζ cosðΩ�=u0ÞÞ (23)

and hence~r ¼~rð�;φÞ is a parametrization of the full flame surface at time t. The surface
area is

AðΩ; tÞ ¼
ðð
j~r� �~rφjδ�δφ: (24)

A lengthy calculation using Eq. (23) yields

j~r� �~rφj2 ¼ ðζ�ηφ � η�ζφ þ ðηηφ þ ζζφÞΩ=u0Þ2 þ ðη2φ þ ζ2φÞðuðt � �=u0Þ=u0Þ2: (25)

Using Eq. (22) enables writing

ηφ ¼ �λZ0ζ=Z0�; ζφ ¼ λZ0η=Z0�; (26)

where λ ¼ ζ�ηφ � η�ζφ. Now using Eq. (26) in Eq. (25) yields

j~r� �~rφj2 ¼ λ2

u20Z
2
0�

½ðu0Z0� þΩζZ0η �ΩηZ0ζÞ2 þ ðZ2
0η þ Z2

0ζÞuðt � �=u0Þ2�: (27)

This describes the influence of Ω and uðtÞ on the base flame surface area, Eq. (24),
integrand. The calculations use η ¼ bRð�;φÞ cosφ and ζ ¼ cRð�;φÞ sinφ, which implies
that λ=Z0� ¼ bcR2=½ηZ0η þ ζZ0ζ � in Eqs. (26) and (27). These results are used to calculate
exactly the flame surface area.

Scale analysis

In sections “Problem formulation” and “Solution,” the analysis used the dimensional form
because the transformations were readily interpreted in original variables. Additional
information can be provided by forming dimensionless ratios for varying parameters
and exploring proportionalities. Two approaches will be followed here. In the direct
approach, the functional dependencies arise only from the governing equations. In the
detailed approach, the nondimensionalization exploits theoretical results obtained directly
from the mathematical formulas given in section “Solution.”

Direct scaling

Define �t ¼ t=to; �x ¼ x=a;�y ¼ y=b;�z ¼ z=c and �u ¼ u=uo; �Ω ¼ Ω=Ωo ¼ 1; �ω ¼ ω=ωo. The
ratio c=b ¼ AR is the aspect ratio of the inflow slot. The characteristic time is chosen as the
diffusion time, to ¼ c2=D. The characteristic length in the x-direction is c ¼ a2uo=D,
which gives, for Eq. (2),

COMBUSTION SCIENCE AND TECHNOLOGY 9



@Z
@�t

þ Δ
@Z
@θ

þ �u
@Z
@�x

¼ @2Z
@�y2

þ 1
A2
R

@2Z
@�z2

: (28)

Parameter Δ ¼ Ω2=D ¼ tdiff =trot ¼ ða2=DÞ=ð1=ΩÞ and the limit Δ ! 0 yields nonrotating
flow. The limit AR ! 1 produces a slot burner, as does the limit AR ! 0. These limits
may be taken separately or jointly. The case Δ ! 0 and AR ! 1 for the nonrotating slot
jet was examined in Miklavcic and Wichman (2016). When c is interpreted as the flame

height H the sole remaining length scale becomes a ¼ ½RePrLe��1=2, where Re ¼
u0H=ν; Pr ¼ ν=α and Le ¼ α=D.

Detailed scaling

The above pedestrian nondimensionalization is augmented with theoretical results from
sections “Base problem (steady, no vorticity),” “Full problem (unsteady, with vorticity),”
and “Relation between base and full problems” made possible by the base-to-full trans-
formation given by Eq. (8). The relevant characteristic flame height is given from the
solution at the end of section “Base problem (steady, no vorticity)” in Eq. (7). The flame
lateral dimensions are defined as b ¼ l and c ¼ ARl, hence the flame height is
H ¼ ðAR=πZstÞðl2uo=DÞ. This can be used to scale the factor a in �x. Note that
H=l / uol=D ¼ Pel, which is the Peclet number and represents the ratio of inertial (uol)
and molecular diffusion (D): hence, the dimensionless flame height is proportional to
Pel=Zst. The fire whirl study of Kunawa et al. (2011) produced a dimensionless flame
height that reduced, in the small-Zst limit, to Pe=4Zst.

Temporal scales are associated with streamwise oscillation, ω, and bulk rotation, Ω.
The flow oscillation given by the sinusoidally oscillating velocity field of Eq. (18) has
period Tω ¼ 2π=ω. The furthest nodal plane, which gives the flame height, is found
from Eq. (19) when ð2π=TωÞH=2uo ¼ π, giving Tω ¼ ARl2=πZstD, which yields
H ¼ uoTω. The lengths of the intermediate nodal planes are given by H=n, where n is
given by Eq. (20). Since these are proportional to H it is clear that as Tω increases the
separation between the nodal planes increases by the same amount. The temporal scale
associated with the bulk rotation rate of the fluid is given by the constant Ω ¼ 2π=TΩ. If
this rotation rate carries the top of the flame through one complete rotation at x ¼ H
then ΩH=uo ¼ 2π, or TΩ ¼ Tω. Of course, there is no a priori reason the bulk rotation
rate must have this value.

The above results can be rephrased. Consider first that the mixture fraction value
Zst <<Oð1Þ at the stoichiometric surface (flame). Then define l as the characteristic
transverse ðy; zÞ length so that AR ,Oð1Þ, and write the period as T ¼ l2=πZstD. The
height of the flame is H ¼ uoT. If the period of u is τ, then there are τ=T equally spaced
nodal planes in the flame. Finally, if τΩ is the period of the bulk rotation, then the top of
the flame rotates τΩ=T times.

10 M. MIKLAVCIC AND I. S. WICHMAN



Discussion and conclusions

Figure 1 shows an off-set flame with the center of rotation outside the flame base. This
displacement distorts the flame shape accordingly. Another example of the displacement
effect is shown in Figure 3 from a 3/4 perspective. This flame lies on an arc of constant
rotation rate and it terminates at a height H, 15cm cm from Eq. (7). Equation (21) gives
the number of rotations as 1:5, slightly different than the actual 1:4. Figure 4 shows a small
aspect ratio AR ¼ 10�1 flame. The difficulty here is that in the development leading to Eq.
(7) one of the error function arguments (the one containing b) is 10 times larger than the
other, hence linearization of the former is not feasible: instead of five nodal planes Eq. (20)
gives 16:9; instead of one half-rotation Eq. (21) gives 1:5. The “turbulent” flame having
random fluctuations shown in Figure 6 yields, from Eq. (7), H ¼ 53:1cm cm, which is
slightly larger than 40 cm shown in the figure. Again, Zst ¼ 0:3 is not “substantially
smaller than unity” and therefore some discrepancy is expected. For this reason,
Figure 5 produces H ¼ 106cm cm (larger than the 85 cm shown), and the number of
nodal planes and flame-tip rotations 10:1 (larger than 7:7).

The influence of flow field oscillation on the flame surface area (and therefore on the
reactant consumption rate and the flame heat release) were not discussed here, even
though explicit formulas for the flame surface area were derived in section “Flame surface

Figure 3. Flame showing 1.4 rotations, steady flow u ¼ u0 ¼ 15. b ¼ c ¼ 1, rotation center at (3,0),
D ¼ 1, Ω ¼ 9. All units are cgs.

COMBUSTION SCIENCE AND TECHNOLOGY 11



area,” and were clearly used in order to construct Figures 1–6. As seen from Eqs. (24) and
(27), the flame area is proportional to the product bc ¼ l2AR.

A detailed analysis of flame area change was made for the simple slot flame in
Miklavcic and Wichman (2016), where it was shown that the oscillation frequency ω
and its intensity ε produce, in the solution, a nonlinear coupling (through a square term in
the solution, e.g., Eq. (27)) that enhances the effect of each to greatly magnify the flame
area. On the subject of velocity field oscillation intensity, the reader will have noticed in
Figures 2, 4, and 5 that the fluctuation ε was 99% of the bulk flow u0, which is hardly a
small perturbation.

Figure 4. Small aspect ratio 0:1 with b ¼ 10, c ¼ 1. Rotation around its center. Also u0 ¼ 3, D ¼ 1,
Ω ¼ 0:9, ε ¼ 0:99, ω ¼ 10. There are five nodal planes, one-half rotation. All units are cgs.

Figure 5. Aspect ratio 0.4 (b ¼ 5, c ¼ 2) with rotation about center. Also u0 ¼ 10, D ¼ 1, Ω ¼ ω ¼ 6,
and ε ¼ :99 There are 7.7 nodal planes with 7.7 rotations over the flame height. Cgs units.
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Figure 6. Rotating jet flame with randomly fluctuating bulk velocity u. Here D ¼ 1, u0 ¼ 5, Ω ¼ 3,
b ¼ 5, and c ¼ 2 in cgs units.
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In the case of the burner flame, it is clear that the displaced flame in the viscous vortex
will have a larger flame area since the height H is independent of the rotation rate. The
analysis presented here makes possible the evaluation of large flow perturbations.
Regarding the subject of fire whirls (Emmons, 1967), experimental research has shown
strange and unexpected behaviors ranging from their movement over surfaces (see the
references in Pinto et al. (2016)) (which implies the existence of a transverse flow velocity
not in the current model) to issues of the merging of several flames, which the current
model can address) to the issue of near-extinction whirls that produce small “horn” like
shapes (Xiao et al., 2016). Buoyancy, which does not appear in the current model, plays a
role in these flames and in their behavior. However, as discussed here, oscillatory motion
of the surrounding flow also has a large influence unaccounted for in steady state models
(Battaglia et al., 2000). Thus, although the current connection to fire whirls is tenuous,
future research may determine various connections along the lines of Kunawa et al.
(2011).

It is important to note, finally, that the construction of the mathematical solution has
greatly simplified obtaining the numerical solution (and thus the figures shown here). In
fact, almost all programming deals with finding the surface of the base, steady-state
problem. The case of square burners requires, for example, only about 20 lines of code.
For a group of four burners placed symmetrically would require approximately Oð100Þ
lines of a code. To obtain the transient images (for the full problem) requires only about
four more lines of code for each case. Thus, the method of solution presented here is
computationally extremely efficient.
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